
CS395T: Continuous Algorithms, Part II
Gradient descent

Kevin Tian

1 Oracle model
In this lecture, and several of the following lectures, we study continuous optimization in what is
commonly referred to as the “oracle model.” Specifically, we assume there is a function f : X → R
which we wish to minimize, and we can only access f through an oracle O. Clearly, we cannot
assume too strong of an oracle, e.g. an oracle which simply returns the minimizer of f would make
our job uninteresting. Typically, our oracle will provide value or derivative information about f .1
In this lecture, we only characterize algorithms accessing zeroth-order and first-order information
about f , through a value oracle and a subgradient oracle (see Definition 5, Part I).

There are many reasons why the oracle model is an appealing framework for developing optimiza-
tion theory. For one, it is an effective separation between the complexity of an algorithm given
access to an oracle, and the complexity of implementing the oracle. From an algorithm design
standpoint, this allows us to focus our attention on the different components of the algorithm in
a rather modular way. Moreover, the oracle model is of practical interest, as certain operations
(e.g. computing gradients of a neural network through backpropagation) may be highly-optimized
through specialized hardware (e.g. cache-aware algorithms for matrix-vector multiplication). These
operations hence serve as reasonable “units” of measurement for the complexity of an algorithm.

Finally, as we aim to demonstrate in this lecture, the oracle model is an effective way to benchmark
different approaches to algorithm design (e.g. do we really need to query higher-order information,
or are values enough?) due to the feasibility of proving lower bounds. In various situations, some
of which we will soon encounter, matching lower and upper bounds are known for algorithms in
the oracle model. These bounds are typically phrased in the following setting.

1. There is a family F of functions. These functions are typically assumed to share some type
of common structure or regularity, but otherwise may be arbitrary within the family.

2. An algorithm A can interact with f ∈ F only through an oracle, which returns certain
information about f such as its value or derivatives. We may also make some assumption
about A beyond the oracle restriction, e.g. it only moves in directions suggested by the oracle.

The goal is then to characterize the number of oracle calls any algorithm A (with the specified
additional restrictions) must use to solve the optimization task it aims to accomplish. We typically
measure the oracle complexity of A by its worst-case performance over functions f ∈ F .

2 Lipschitz optimization
Recall that in Section 3, Part I, we established the following remarkable result: all convex op-
timization problems admit high-accuracy polynomial-time solvers. We could ask the even more
ambitious question: is any structure at all necessary to design optimization algorithms, or are
there general-purpose frameworks that always work, such as the cutting-plane method for convex
problems? The following simple lower bound demonstrates at least some structure is necessary,
even in dimension 1 and assuming a bounded domain and range.

1There are interesting exceptions beyond the setting of derivatives. For example, [CJJ+20] initiated a line of work
characterizing algorithm complexities accessing a ball optimization oracle, which returns an (approximate) minimizer
of a function in a small Euclidean ball. This applies to functions exhibiting local (but not global) regularity.

1

Lemma 1. No algorithm A which accesses a target f : [0, 1] → [0, 1] using a value oracle can
optimize f to additive error < 1 in a finite number of queries.

Proof. Consider a family of functions {fx}x∈[0,1], where fx = 1 everywhere except fx = 0. To
optimize fx to additive error < 1, we must learn what x is. Given a finite number of oracle queries,
there are infinitely many fx consistent with the oracle answers, so learning x is a contradiction.

The example of Lemma 1 is rather extreme, but already highlights a major obstacle to unstructured
optimization: it is difficult to gain information about where the optimizer lies. One natural way
to impose some regularity on a target function is to ask that it does not change too rapidly, so a
near-optimizer is necessarily close to the true optimizer. This motivates the following definition.

Definition 1 (Lipschitzness). We say f : X → R is L-Lipschitz with respect to the norm ‖·‖ if

|f(x)− f(x′)| ≤ L ‖x− x′‖ , for all x, x′ ∈ X .

If ‖·‖ = ‖·‖2, we simply say f is L-Lipschitz.

The following demonstrates a simple example of a Lipschitz function.

Lemma 2. Let f(x) = ‖x‖ for some norm ‖·‖. Then, f is 1-Lipschitz with respect to ‖·‖.

Proof. By the triangle inequality, both f(x)− f(x′) and f(x′)− f(x) are at most ‖x− x′‖.

Unfortunately, a small modification of Lemma 1 dashes hopes of efficiently minimizing all Lipschitz
functions as well. To construct our lower bound, we use the following definition.

Definition 2 (Packings and coverings). Let S, T ⊂ Rd and ε > 0.

• We say {Ti}i∈[n] is an ε-packing of S by T if there are {xi}i∈[n] ⊂ Rd such that Ti = {xi}⊕εT
for all i ∈ [n], and all Ti ∩ Tj = ∅ for i 6= j.

• We say {Ti}i∈[n] is an ε-covering of S by T if there are {xi}i∈[n] ⊂ Rd such that Ti = {xi}⊕εT
for all i ∈ [n], and

⋃
i∈[n] Ti ⊇ S.

The following fundamental relationship between packings and coverings is often useful.

Lemma 3. Let {Ti}i∈[n] = {{xi}⊕εT}i∈[n] be a maximal ε-packing of S by T , i.e. no T ′ = {x′}⊕εT
can be added while remaining an ε-packing. Then {{xi} ⊕ 2εT}i∈[n] is a 2ε-covering of S by T .

Proof. Suppose there was x′ ∈ S such that x is not covered by {{xi} ⊕ 2εT}i∈[n]. Then {x′} ⊕ εT
is disjoint from each of the {Ti}i∈[n], a contradiction to maximality of the packing.

Corollary 1. For any ε ∈ (0, 1), there is an ε-packing of S ⊂ Rd by S of cardinality ≥ (1
2ε)

d.

Proof. By Lemma 3, the maximum cardinality of an ε-packing of S by S is larger than the min-
imimum cardinality of a 2ε-covering of S by S, since any maximum cardinality packing is clearly
a maximal packing. The conclusion follows by lower bounding the cardinality of any 2ε-covering
{Si = {xi} ⊕ 2εS}i∈[n] of S, by using a volume argument:

n (2ε)
dVol(S) = nVol(2εS) ≥ Vol

 ⋃
i∈[n]

Si

 ≥ Vol(S) =⇒ n ≥
(

1

2ε

)d
.

Armed with Corollary 1, our lower bound on Lipschitz function minimization follows.

Lemma 4. Let L > ε > 0. No algorithm A which accesses a target L-Lipschitz function f :
B(0d, 1)→ R using a value oracle can optimize f to additive error ε in < (L2ε)

d − 1 queries.

2

Proof. Let {Si = B(xi, ε)} be an ε
L -packing of B(0d, 1) by itself of cardinality ≥ (L2ε)

d, which exists
by Corollary 1. Consider a family of functions {fi}i∈[n], where

fi(x) := min (0,−ε+ L ‖x− xi‖2) .

We observe that fi is L-Lipschitz by casework on Lemma 2 (i.e. considering the cases where x, x′
are variously in or outside Si), and further outside Si, fi(x) is zero. To optimize fi to additive error
ε, we must find a point within distance ε of xi, which uniquely identifies i ∈ [n] by the definition
of a packing, so we must learn what i ∈ [n] is. Given < (L2ε)

d − 1 oracle queries, there must be
some distinct i, j ∈ [n] such that no point in Si or Sj is queried, so fi and fj are both consistent
with the oracle answers (which are all zero). Hence, learning i ∈ [n] is a contradiction.

Lemma 4 highlights the weakness of a value oracle to distinguish functions which agree on large
parts of space. Fortunately, we already have seen a structural assumption which yields a tool
for learning more about the minimizer of a function: convexity, which comes with existence of
subgradients. As we saw in Part I, subgradients are separating hyperplanes between iterates of an
algorithm and the minimizer, enabling cutting-plane methods to solve optimization problems.

We explore in this section how convexity can help in a different way, by using subgradient informa-
tion as a “descent direction.” Before giving our first algorithm, we establish fundamental limits on
Lipschitz convex function minimization with a subgradient oracle, from [NY83]. Our lower bound
holds under the natural assumption that iterates of an algorithm are only allowed to move within
the span of subgradients returned by the oracle. This assumption can be removed, and the lower
bound extends to hold information-theoretically against randomized algorithms [ABRW12].

Theorem 1 (Lipschitz convex lower bound). Let ε, L,R > 0. No algorithm A which accesses a
target L-Lipschitz, convex function f : B(0d, R) → R using a subgradient oracle O and produces
iterates {xt}0≤t<T can optimize f to additive error ε using T < min(d, (LR4ε)2) queries, subject to
the restriction that

x0 = 0d, xt ∈ Span
(
{O(xs)}0≤s<t

)
for all t ∈ [T]. (1)

Proof. Assume T < d, else there is nothing to prove. Consider, for γ, α > 0 to be chosen:

f(x) := γmax
i∈[T]

xi +
α

2
‖x‖22 . (2)

It is straightforward to check that f(x) is convex and (γ + αR)-Lipschitz, and that

∂f(x) = γ · Conv
({
ei | i ∈ argmaxj∈[T]xj

})
+ αx.

We will use a subgradient oracle O which returns O(x) = γei+αx, for the smallest i ∈ [T] satisfying
i ∈ argmaxj∈[T]xj . We claim that for all 0 ≤ t < T , xt is only supported in the first t coordinates,
which follows inductively from our oracle definition and the assumption (1). In particular, note
that either xt has negative values in all of its first t coordinates (in which case O(xt) = et+1), or
O(xt) = ei for some i ∈ [t]. Therefore, f(xt) ≥ 0 for all 0 ≤ t < T . On the other hand,

x? :=
∑
i∈[T]

(
− γ

αT

)
ei =⇒ f(x?) = − γ2

2αT
,

and 0d ∈ ∂f(x?), so x? minimizes f by Lemma 7, Part I, assuming ‖x?‖2 ≤ R. Therefore, A has
not produced any iterate achieving additive error γ2

2αT . Choosing γ = L
2 and α = L

2R
√
T

yields
‖x?‖2 ≤ R and γ + αR ≤ L, and rearranging gives the claimed lower bound on T :

ε >
γ2

2αT
=

LR

4
√
T
⇐⇒ T >

(
LR

4ε

)2

.

Remark 1. Theorem 1 further shows that Ω(min(d, L
2

αε)) queries are necessary in the setting where
f is both L-Lipschitz and α-strongly convex (see Definition 4, to be introduced). This lower bound
is also optimal; for simple derivations of a matching upper bound, see [LSB12, RSS12].

3

The function in (2) is known as Nemirovski’s function, and is a common example used in lower
bound constructions in the subgradient oracle model. Intuitively, it exploits the inability of the
subgradient oracle to reveal more than “one new coordinate” under the assumption (1), because
until the algorithm sees T subgradients it cannot find an approximate minimizer.

Interestingly, up to logarithmic terms we have already established an upper bound matching the
first component of the lower bound in Theorem 1. Indeed, recall that the center of gravity method
from Part I uses ≈ d log(dε) queries to achieve ε error.2 In the remainder of the section, we show
that a simple subgradient-based algorithm matches the other component as well. We begin by
proving an alternate characterization of Lipschitzness, which will frequently be used.

Lemma 5. Let f : X → R be convex and L-Lipschitz for X ⊆ Rd, and let x ∈ relint(X) and
g ∈ ∂f(x) be contained in the lowest-dimensional subspace containing X . Then ‖g‖2 ≤ L.

Proof. Suppose for contradiction that there exists such f, x, g with ‖g‖2 > L. Let ε > 0 be such
that x′ := x + εg ∈ X , since x ∈ relint(X). Then, we have a contradiction: Lipschitzness of f
implies that f(x′) ≤ f(x) + εL ‖g‖2, but g ∈ ∂f(x) yields

f(x′) ≥ f(x) + 〈g, εg〉 = f(x) + ε ‖g‖22 > f(x) + εL ‖g‖2 .

We now give an upper bound on the performance of the projected subgradient descent method,
when applied to Lipschitz convex functions. This algorithm repeatedly iterates the update rule3

gt ∈ ∂f(xt), xt+1 ← ΠX (xt − ηgt) , for all 0 ≤ t < T. (3)

Here, η > 0 is a step size to be chosen, and ΠX is the Euclidean projection to X . Intuitively, (3)
uses gt as a suggested “descent direction” while remaining inside the feasible region X .

Theorem 2 (Projected gradient descent). Let f : X → R be convex and L-Lipschitz for X ⊆
B(0d, R). Consider iterating the update (3) for 0 ≤ t < T , from x0 ← 0d with η = R

LT 1/2 , and let
x̄ := 1

T

∑
0≤t<T xt. Then,

f(x̄)−min
x∈X

f(x) ≤ LR√
T
.

Proof. We begin by rewriting the update rule (3) in a given iteration as

xt+1 = argminx∈X
1

2
‖x− (xt − ηgt)‖22 = argminx∈X 〈ηgt, x〉+

1

2
‖x− xt‖22 .

By the first-order optimality condition (Lemma 2, Part I), we thus have for all u ∈ X ,

〈ηgt + (xt+1 − xt), xt+1 − u〉 ≤ 0. (4)

By using the identity

〈xt − xt+1, xt+1 − u〉 =
1

2
‖xt − u‖22 −

1

2
‖xt+1 − u‖22 −

1

2
‖xt − xt+1‖22 ,

we hence have by rearranging (4), for all 0 ≤ t < T ,

〈ηgt, xt − u〉 ≤
1

2
‖xt − u‖22 −

1

2
‖xt+1 − u‖22 −

1

2
‖xt − xt+1‖22 + 〈ηgt, xt − xt+1〉

≤ 1

2
‖xt − u‖22 −

1

2
‖xt+1 − u‖22 −

1

2
‖xt − xt+1‖22 + η ‖gt‖2 ‖xt − xt+1‖2

≤ 1

2
‖xt − u‖22 −

1

2
‖xt+1 − u‖22 +

η2

2
‖gt‖22 ≤

1

2
‖xt − u‖22 −

1

2
‖xt+1 − u‖22 +

η2L2

2
.

2Under certain problem parameterizations, the lower bound in Theorem 1 can actually be improved by a loga-
rithmic factor to match the upper bound from the center of gravity method, see [NY83].

3We ignore the issue that ∂f(x) may be undefined on the boundary of X , since for Lipschitz functions, moving
infinitesimally into the interior negligibly affects function error.

4

In the last line, we used the Cauchy-Schwarz and Young’s inequalities, as well as the bound in
Lemma 5. By summing the above inequality for all iterations 0 ≤ t < T and dividing by ηT , and
using the assumption gt ∈ ∂f(xt) to lower bound the left-hand side, we have for all u ∈ X ,

1

T

∑
0≤t<T

(f(xt)− f(u)) ≤ 1

T

∑
0≤t<T

〈ηgt, xt − u〉 ≤
‖x0 − u‖22

2ηT
+
ηL2

2
≤ R2

2ηT
+
ηL2

2
.

The conclusion follows by taking u to be a minimizer of f , applying convexity once again (which
yields f(x̄) ≤ 1

T

∑
0≤t<T f(xt)), and using our choice of η.

Pleasingly, the algorithm in Theorem 2 applies a simple update rule (3), and yet also achieves the
optimal rate for Lipschitz convex function minimization (Theorem 1) up to a constant factor, when
d is sufficiently larger than LR

ε . Combined with the center of gravity method, we have established,
up to a logarithmic factor, the complexity of Lipschitz convex optimization in the subgradient
oracle model. We can think of the projected subgradient method (3) as preferable in the “low-
accuracy” regime where the target accuracy ε is not too small, as it gives a rate independent of
the dimension d, at the cost of a polynomial overhead in ε and other parameters, i.e. L and R. On
the other hand, the center of gravity method incurs a d factor overhead, but is preferable in the
“high-accuracy” regime of small ε due to the logarithmic dependence on ε in its optimization rate.

3 Smooth optimization
Theorem 2 is encouraging because of its optimality in the high-dimensional regime (despite its
relative simplicity), but begs the question: can we do better assuming more structure on f? Here,
we explore the utility of an additional structural assumption known in the literature as smoothness.

Definition 3 (Smoothness). We say f : Rd → R is L-smooth with respect to the norm ‖·‖, or
L-smooth in ‖·‖, if f is differentiable, and ∇f is L-Lipschitz, in the sense that

‖∇f(x′)−∇f(x)‖∗ ≤ L ‖x− x
′‖ for all x, x′ ∈ Rd.

If ‖·‖ = ‖·‖∗ = ‖·‖2, we simply say f is L-smooth.

To provide some motivation for Definition 3, imagine an infinitesimal version of the update rule
(4) (with X = Rd), where we have a particle xt ∈ Rd evolving via the ordinary differential equation
(ODE) d

dtxt = vt, for a velocity vector vt.4 An application of the chain rule shows that

d
dt
f(xt) = 〈∇f(xt), vt〉 = −‖∇f(xt)‖22 if vt = −∇f(xt), (5)

suggesting that vt ← −∇f(xt) is the direction of steepest descent if our aim is to decrease function
value. The ODE d

dtxt = −∇f(xt) is known as the gradient flow method. However, such ODE-
based update rules are not implementable in discrete time. Instead, we may use a forward Euler
discretization which, for a time interval t ∈ [t0, t0 + η] replaces vt = ∇f(xt) with vt = ∇f(xt0). It
is ideal that our discretization closely approximates the ideal gradient flow process, which is true if
∇f(x) is stable in small regions. Definition 3 is a natural way to formalize this stability condition.

Next, recall that Definition 1 is a statement about zeroth-order stability of a function f , but implies
bounds on first-order information on f through Lemma 5. Analogously, the first-order stability
condition in Definition 3 yields bounds on second-order information.

Lemma 6. If f : Rd → R is differentiable and convex, then f is L-smooth iff for all x, x′ ∈ Rd,

f(x′) ≤ f(x) + 〈∇f(x), x′ − x〉+
L

2
‖x′ − x‖22 . (6)

If f is twice-differentiable (and possibly nonconvex), f is L-smooth iff |∇2f(x)[v, v]| ≤ L ‖v‖22 for
all x, v ∈ Rd.

4We sometimes use xt to denote a sequence of particles indexed by time t, as shorthand for a function x(t) which
takes x : R≥0 → Rd. More generally, for a function Φ indexed by a variable t, we may identify Φt ≡ Φ(t).

5

Proof. We begin with the first claim. Let f be L-smooth. By the fundamental theorem of calculus,

f(x′) = f(x) +

∫ 1

0

〈∇f(xλ), x′ − x〉 dλ, where xλ := (1− λ)x+ λx′.

This follows by evaluating g(λ) := f(xλ) at the endpoints of λ ∈ [0, 1], since g′(λ) = 〈∇f(xλ), x′ − x〉.
By the Cauchy-Schwarz inequality and the smoothness assumption, we have the desired

f(x′)− f(x)− 〈∇f(x), x′ − x〉 =

∫ 1

0

〈∇f(xλ)−∇f(x), x′ − x〉 dλ

≤
∫ 1

0

‖∇f(xλ)−∇f(x)‖2 ‖x
′ − x‖2 dλ

≤
∫ 1

0

Lλ ‖x′ − x‖22 dλ =
L

2
‖x′ − x‖22 .

(7)

We can also check that the same proof lower bounds f(x′)−f(x)−〈∇f(x), x′ − x〉 by −L2 ‖x
′ − x‖22,

regardless of convexity. Conversely, suppose (6) holds, and let φ(x) := f(x)−f(x̄)−〈∇f(x̄), x− x̄〉
for all x ∈ Rd, and a fixed x̄. We can check that (6) still holds for φ, because it differs from f by
a linear term which cancels out in the equation. Therefore,

0 = φ(x̄) = min
x′∈Rd

φ(x′) ≤ min
x′∈Rd

φ(x) + 〈∇φ(x), x′ − x〉+
L

2
‖x′ − x‖22

= φ(x)− 1

2L
‖∇φ(x)‖22 = f(x)− f(x̄)− 〈∇f(x̄), x− x̄〉 − 1

2L
‖∇f(x)−∇f(x̄)‖22 .

The first line used that convexity shows φ ≥ 0 pointwise, and also applied (6) for φ; the second
line directly minimized the quadratic.5 Summing this equation with itself with x, x̄ interchanged,
and applying the Cauchy-Schwarz inequality, we have established smoothness as desired:

1

L
‖∇f(x̄)−∇f(x)‖22 ≤ 〈∇f(x̄)−∇f(x), x̄− x〉 ≤ ‖∇f(x̄)−∇f(x)‖2 ‖x̄− x‖2

=⇒ ‖∇f(x̄)−∇f(x)‖2 ≤ L ‖x̄− x‖2 .

Next, let f be twice-differentiable, and suppose f is L-smooth. By adding (6) with the same
equation where x and x′ are reversed, we see that for all x, x′ ∈ Rd,

〈∇f(x′)−∇f(x), x′ − x〉 ≤ L ‖x′ − x‖22 .

Letting x′ ← x+ tv and taking a limit as t← 0, we can rewrite the left-hand side as t2∇2f(x)[v, v]

and the right-hand side as Lt2 ‖v‖22, and dividing by t2 proves the desired ∇2f(x)[v, v] ≤ L ‖v‖22.
An analogous argument using the lower bound then establishes ∇2f(x)[v, v] ≥ −L ‖v‖22.

Finally, suppose |∇2f(x)[v, v]| ≤ L ‖v‖22 for all v, so that all eigenvalues of ∇2f(x) are in [±L].
Then, again letting xλ := (1− λ)x+ λx′ for λ ∈ [0, 1], the fundamental theorem of calculus gives

‖∇f(x′)−∇f(x)‖2 =

∥∥∥∥∫ 1

0

∇2f(xλ)(x′ − x)dλ
∥∥∥∥

2

≤
∫ 1

0

∥∥∇2f(xλ)(x′ − x)
∥∥

2
dλ

≤ ‖x′ − x‖2
∫ 1

0

∥∥∇2f(xλ)
∥∥

op dλ ≤ L ‖x
′ − x‖2 ,

as desired. The first inequality applied the triangle inequality, and the last used that the operator
norm of a symmetric matrix is the largest magnitude of any of its eigenvalues.

Recall that convexity of f yields a lower bound on f by a linear function everywhere, using a first-
order approximation centered at any point x (Lemma 1, Part I). Similarly, (6) can be interpreted
as upper bounding f everywhere using a quadratic centered at x. Upper bounds are very useful in
the design of optimization algorithms, since they can be used to certify progress on function value.
Moreover, because the form of our upper bound (6) is simple, it can be directly optimized. Both
of these ideas are captured formally by the following claim.

5For this calculation in more detail, see the proof of Corollary 2.

6

Corollary 2. Let f : Rd → R be L-smooth. Then for any x ∈ Rd, letting x′ ← x− 1
L∇f(x),

f(x′) ≤ f(x)− 1

2L
‖∇f(x)‖22 .

Proof. Consider minimizing the right-hand side of (6) in x′. This is a convex function, so first-order
optimality requires ∇f(x) + L(x′ − x) = 0d ⇐⇒ x′ = x − 1

L∇f(x), motivating our update rule.
Directly computing the right-hand side of (6) then yields the claim:

f(x) + 〈∇f(x), x′ − x〉+
L

2
‖x′ − x‖22 = f(x)− 1

L
‖∇f(x)‖22 +

1

2L
‖∇f(x)‖22

= f(x)− 1

2L
‖∇f(x)‖22 .

In the language of our earlier discussion of gradient flow (5), Corollary 2 shows that for smooth
functions, following an Euler discretization d

dtxt = −∇f(xt0) for a time interval η = 1
L makes

comparable function progress to ideal gradient flow. Indeed, letting x := xt0 and x′ := xt0+η under
this discretization scheme, following gradient flow would have yielded

f(x′)− f(x) = −
∫ t0+η

t0

‖∇f(xt)‖22 dt,

and instead Corollary 2 shows our discrete update yields progress − 1
2L ‖∇f(x)‖22. Even without

convexity, iterating Corollary 2 yields strong guarantees on progressing towards local optimality.

Lemma 7. Let f : Rd → R be L-smooth, let ε > 0, and suppose for x0 ∈ Rd we have f(x0) −
minx∈Rd f(x) ≤ ∆. Then iterating xt+1 ← xt − 1

L∇f(xt) for 0 ≤ t < T where T ≥ ∆
ε2 ,

min
0≤t<T

‖∇f(xt)‖2 ≤ ε.

Proof. Suppose for contradiction that the conclusion is false. Then, telescoping Corollary 2 gives

f(xT) ≤ f(x0)− 1

2L

T−1∑
t=0

‖∇f(xt)‖22 ≤ f(x0)− Tε2 ≤ f(x0)−∆.

This is a contradiction, as f(x0)− f(xT) ≤ ∆ by assumption.

In many nonconvex optimization settings, a natural goal is to find an ε-stationary point, i.e. a point
x where ‖∇f(x)‖2 ≤ ε. The design of stationary point-finding algorithms is often complemented
by a line of research which aims to establish that local minima have desirable global optimality
properties, see e.g. [GLM16] for a famous example. In the smooth case, Lemma 7 in fact yields
optimal guarantees for finding approximate stationary points, as shown by [CDHS20]. We next
show how to combine smoothness with convexity to give stronger global convergence guarantees.

Theorem 3 (Smooth gradient descent). Let f : Rd → R be L-smooth and convex, and suppose for
x0 ∈ Rd we have ‖x0 − x?‖2 ≤ R for x? ∈ argminx∈Rdf(x). Then iterating xt+1 ← xt − 1

L∇f(xt)
for 0 ≤ t < T ,

f(xT)− f(x?) ≤ 2LR2

T
.

Proof. Throughout the proof, let Φt := f(xt)−f(x?) for all 0 ≤ t ≤ T , and note that ‖xt − x?‖2 ≤
R for all 0 ≤ t ≤ T by Lemma 8. By convexity and the Cauchy-Schwarz inequality,

Φt ≤ 〈∇f(xt), xt − x?〉 ≤ ‖∇f(xt)‖2R,

so combined with Corollary 2 (which shows Φt ≥ Φt+1), we have

Φt+1 ≤ Φt −
1

2L

(
Φt
R

)2

=⇒ 1

2LR2
≤ Φt

2LR2Φt+1
≤ 1

Φt+1
− 1

Φt
.

Telescoping for T iterations shows T
2LR2 ≤ 1

ΦT
, or ΦT ≤ 2LR2

T as claimed.

7

In the proof of Theorem 3, we used the following contractivity claim.

Lemma 8. Let f : Rd → R be L-smooth and convex, and let x′ ← x − η∇f(x) for η ≤ 1
L . Then

for x? ∈ argminx∈Rdf(x), ‖x′ − x?‖2 ≤ ‖x− x?‖2.

Proof. Expanding both sides of ‖x′ − x?‖22 ≤ ‖x− x?‖
2
2, it suffices to establish

‖x− x?‖22 − ‖(x− η∇f(x))− x?‖22 ≥ 0 ⇐⇒ 2η 〈∇f(x), x− x?〉 ≥ η2 ‖∇f(x)‖22 .

The latter expression follows from Corollary 2 since f(x′) ≥ f(x?), so convexity gives

〈∇f(x), x− x?〉 ≥ f(x)− f(x?) ≥ f(x)− f(x′) ≥ 1

2L
‖∇f(x)‖22 ≥

η

2
‖∇f(x)‖22 .

Interestingly, unlike in the Lipschitz convex setting, the gradient descent algorithm in Theorem 3 is
provably suboptimal. We expand on this point in the next section, where we prove a lower bound
on the performance of gradient methods in the smooth convex setting via a reduction.

4 Well-conditioned optimization
In this section, we begin to explore the question: when can we achieve dimension-free linear
convergence rates, i.e. algorithms for minimizing f which guarantee for some C, that f(xt) −
minx f(x) ≤ exp(−Ct)? Here, t should be thought of as an iteration counter, and error rates of
the form exp(−Ct) imply that to achieve ε error, we must take t ∝ log 1

ε . Linear convergence rates
are well-suited for the high-accuracy regime, where the overhead of achieving a very small error
ε is only logarithmic. Note that the cutting-plane methods in Part I achieve linear convergence
rates with poly(d) overhead, whereas the results of this lecture thus far (i.e. Theorems 2, 3) give
dimension-free rates, but with polynomial overhead in the inverse target accuracy.

To motivate the structural assumption which we introduce in this section, we revisit the conceptual
gradient flow algorithm from Section 3. Recall from (5) that if d

dtxt = −∇f(xt), then d
dt (f(xt)−

f(x?)) = d
dtf(xt) = −‖∇f(xt)‖22, where x? ∈ argminxf(x). Combined with Fact 1, this suggests a

structural assumption which would yield linear convergence rates: that of the form

‖∇f(x)‖22 ≥ C(f(x)− f(x?)). (8)

Fact 1 (Grönwall’s inequality). If Φ0 ≥ 0 and d
dtΦt ≤ −CΦt for all t ≥ 0, Φt ≤ exp(−Ct)Φ0.

Indeed, putting together (5), (8), and Fact 1 immediately implies a linear convergence rate on the
optimization error of gradient flow. Another natural way to see this is to show that the potential
function V (t) := exp(Ct)(f(xt)− f(x?)) is monotone, since

d
dt
V (t) = exp(Ct)(C (f(xt)− f(x?))− ‖∇f(xt)‖22) ≤ 0,

using (8). Arguments of this form (where error bounds are proven via monotonicity of a potential
function) are sometimes called Lyapunov arguments, and the potential V (t) is called a Lyapunov
function. These arguments can be used in continuous or discrete time, although sometimes sig-
nificant ingenuity is required to design the correct Lyapunov function. What is left to do is to
give a sufficient condition for bounds of the form (8), and to analyze a corresponding discrete-time
algorithm. Fortunately, the following definition is well-suited for both of these modifications.

Definition 4 (Strong convexity). We say f : X → R is µ-strongly convex with respect to the norm
‖·‖, or µ-strongly convex in ‖·‖, if for all x, x′ ∈ Rd,

f((1− λ)x+ λx′) ≤ (1− λ)f(x) + λf(x′)− µλ(1− λ)

2
‖x− x′‖2 .

If ‖·‖ = ‖·‖2, we simply say f is µ-strongly convex.

8

Notice that Definition 4 recovers our usual notion of convexity when µ = 0. Intuitively, it enforces
that f is not only overestimated by linear combinations along line segments; it is overestimated by
at least a quadratic factor. We begin by demonstrating several consequences of strong convexity.

Lemma 9. If f : Rd → R is differentiable, then f is µ-strongly convex iff for all x, x′ ∈ Rd,

f(x′) ≥ f(x) + 〈∇f(x), x′ − x〉+
µ

2
‖x′ − x‖22 . (9)

Further, if f is twice-differentiable, f is µ-strongly convex iff ∇2f(x)[v, v] ≥ µ ‖v‖22 for all x, v ∈ Rd.

Proof. For the first claim, suppose (9) holds. Then letting xλ := (1 − λ)x + λx′ for λ ∈ [0, 1],
µ-strong convexity follows by combining a 1 − λ multiple of the first equation below with a λ
multiple of the second, since x− xλ = λ(x− x′) and x′ − xλ = (1− λ)(x′ − x):

f(x) ≥ f(xλ) + 〈∇f(xλ), x− xλ〉+
µ

2
‖x− xλ‖22 ,

f(x′) ≥ f(xλ) + 〈∇f(xλ), x′ − xλ〉+
µ

2
‖x′ − xλ‖

2
2 .

Next, suppose f is µ-strongly convex. Then defining xλ as above, and applying the definition of
strong convexity, we have for any λ ∈ [0, 1] that

f(x′) ≥
f(xλ)− (1− λ)f(x) + µλ(1−λ)

2 ‖x− x′‖22
λ

= f(x) +
f(xλ)− f(x)

λ
+
µ(1− λ)

2
‖x− x′‖22 .

Taking λ→ 0 yields (9). Next, assuming the second-order lower bound and recalling (7),

f(x′) = f(x) + 〈∇f(x), x′ − x〉+

∫ 1

0

〈∇f(xλ)−∇f(x), x′ − x〉 dλ

= f(x) + 〈∇f(x), x′ − x〉+

∫ 1

0

(∫ λ

0

∇2f(xλ′)[x
′ − x, x′ − x]dλ′

)
dλ

≥ f(x) + 〈∇f(x), x′ − x〉+

∫ 1

0

λµ ‖x′ − x‖22 dλ = f(x) + 〈∇f(x), x′ − x〉+
µ

2
‖x′ − x‖22 .

As we have established, this implies f is µ-strongly convex. Conversely, µ-strong convexity of f
implies the second-order lower bound by an analogous argument to Lemma 6.

Remark 2. For convex, non-differentiable f : Rd → R, µ-strong convexity is equivalent to

f(x′) ≥ f(x) + 〈g, x′ − x〉+
µ

2
‖x′ − x‖22 for all g ∈ ∂f(x).

By taking µ→ 0, Lemma 9 gives a familiar second-order characterization of (standard) convexity
of a function f : Rd → R, when f is twice-differentiable, which is that ∇2f � 0d pointwise.
Symmetrically to Corollary 2, we next show that (9) indeed implies a bound of the form in (8).

Corollary 3. Let f : Rd → R be µ-strongly convex, and let x? := argminx∈Rdf(x).6 Then

f(x)− f(x?) ≤ 1

2µ
‖∇f(x)‖22 .

Proof. The minimum of the left-hand side of (9) over x′ is at least the minimum of the right-hand
side over x′, which is achieved when ∇f(x) + µ(x′ − x) = 0d. For this optimal x′ = x− 1

µ∇f(x),
the right-hand side has value f(x)− 1

2µ ‖∇f(x)‖22, and rearranging yields the conclusion.

Corollary 3 shows that for µ-strongly convex functions, the bound (8) holds with C = 2µ. Com-
bined with Fact 1, this immediately yields a linear convergence rate on the error achieved by
gradient flow, as previously discussed. It is not difficult to show that for smooth, strongly convex
functions, this linear convergence rate continues to hold in discrete time.

6Strongly convex functions are also strictly convex, so x? is unique (Lemma 3, Part I).

9

Theorem 4 (Well-conditioned gradient descent). Let f : Rd → R be L-smooth and µ-strongly
convex, and let x? := argminx∈Rdf(x) and κ := L

µ ≥ 1.7 Then iterating xt+1 ← xt − 1
L∇f(xt) for

0 ≤ t < T ,

f(xT)− f(x?) ≤
(

1− 1

κ

)T
(f(x0)− f(x?))

Proof. We claim that for all 0 ≤ t < T ,

f(xt+1)− f(x?) ≤
(

1− 1

κ

)
(f(xt)− f(x?)), (10)

which inductively implied proves the claim. Indeed, (10) follows from Corollary 2 and Corollary 3.

Remark 3. Interestingly, Theorem 4 only used strong convexity of f through the consequence in
Corollary 3, which can hold for non-convex functions as well. In general, bounds of the form (8)
are referred to in the literature as gradient domination or Polyak-Łojasiewicz conditions, and have
been used to establish convergence rates for training neural networks [XLS17, HM17]. Gradient
domination further implies quadratic growth bounds of the form (9) around x← x?, which can be
proven by tracking an appropriate Lyapunov function. For more details, see [KNS16].

We call the setting in Theorem 4, where f is both smooth and strongly convex, the well-conditioned
regime, and κ is called the condition number of f . Note that when f(x) = 1

2x
>Ax for A ∈ Sd×d�0 ,

the condition number κ is the ratio of the largest and smallest eigenvalues of A. Theorem 4 shows
that for well-conditioned functions with κ � d, gradient descent improves upon the convergence
rate of the center of gravity method from Part I. Indeed, Theorem 4 gives a dimension-free linear
convergence rate in the well-conditioned regime, as advertised at the beginning of the section.

Finally, we conclude the section with a discussion of lower bounds in the well-conditioned regime.
To construct our hard instance, we take a brief detour and define a graph-theoretic object.

Definition 5 (Laplacian). Let G = (V,E,w) be an undirected graph with vertices V , edges E, and
edge weights w ∈ RE>0. Let DG ∈ RV×V be the diagonal degree matrix with [DG]vv =

∑
e=(u,v)∈E we

for all v ∈ V , and let A ∈ RV×V be the weighted adjacency matrix where for each e = (u, v) ∈ E,
we have Auv = Avu = we. Then we define the Laplacian matrix of G by LG := DG −AG.

Lemma 10. Let G = (V,E,w) be an undirected graph. Then for any x ∈ RV ,

x>LGx =
∑

e=(u,v)∈E

we(xu − xv)2.

Proof. Let bu,v := eu − ev ∈ {−1, 0, 1}V be a 2-sparse vector, for each edge (u, v) ∈ E.8 It is
straightforward to verify, by decomposing edgewise, that DG −AG =

∑
e=(u,v)∈E webu,vb

>
u,v. The

conclusion follows since for all x ∈ RV , we have 〈bu,v, x〉2 = (xu − xv)2.

Our well-conditioned hard instance is based off of a similar construction as (2), where each gradient
query can only reveal one coordinate to the algorithm. To ensure smoothness and convexity, instead
of a max-type function, our well-conditioned construction is based on the Laplacian of a path graph.
The structure of the path obstructs more than one coordinate from being revealed per iteration.

Theorem 5 (Well-conditioned lower bound). Let κ ≥ 1 and ε ∈ (0, 1). No algorithm A which
accesses a target L-smooth, µ-strongly convex function f with κ = L

µ using a gradient oracle O can

optimize f to additive error ε(f(x0) − minx∈Rd f(x)) using T <
√
κ−1
2 log(1

κε) queries, subject to
the restriction (1).

7By comparing (6) and (9), it is clear that L < µ is a contradiction.
8Because G is undirected, we can arbitrarily choose an orientation (u, v) or (v, u) for each edge in this proof.

10

Proof. Let G = (V,E,w) be an unweighted path graph (i.e. w = 1E), on d vertices labeled by
[d] ≡ V , and with d− 1 edges E = {(i, i+ 1)}i∈[d−1]. Consider the function

f(x) :=
κ− 1

8
(x>LGx− 2 〈e1, x〉) +

1

2
‖x‖22 .

By the characterizations in Lemmas 9 and 10, it is clear that f is 1-strongly convex (as∇2f(x)[v, v] ≥
∇2(µ2 ‖·‖

2
2)[v, v] = µ ‖v‖22). Moreover, we claim that LG � 4Id, which implies that f is κ-smooth

by Lemma 6. To see this, applying Lemma 10 with our specific graph shows for any v ∈ Rd,

LG[v, v] =
∑

i∈[d−1]

(vi − vi+1)2 ≤
∑

i∈[d−1]

(2v2
i + 2v2

i+1) ≤ 4 ‖v‖22 . (11)

Now, observe that if x is supported on the first t < d coordinates, then both x and

LGx =
∑

i∈[d−1]

(xi − xi+1)(ei − ei+1)

are supported on the first t+1 coordinates. Hence, under the assumption (1), the iterates of A are
supported on the first T coordinates, since ∇f(x) linearly combines LGx, e1, and x. Therefore,
for any iterate x of A, letting x? := argminx∈Rdf(x), strong convexity implies (via Lemma 9)

f(x)− f(x?) ≥ 1

2
‖x− x?‖22 ≥

1

2

∑
i∈[d]\[T]

[x?]2i . (12)

Moreover, by first-order optimality, we have that κ−1
4 (LGx

? − e1) + x? = 0d, so (11) shows

x?i−1 −
2(κ− 1) + 4

κ− 1
x?i + x?i+1 for all i ∈ [d− 1],

where we denote x?0 := 1. It is straightforward to check that

x?i =

(
1− 2√

κ+ 1

)i
for all i ∈ [d]

is a solution, where we use that r = 1−2(
√
κ−1)−1 is a root of the quadratic, r2− 2(κ+1)

κ−1 r+1 = 0.
Finally, by taking d→∞, the right-hand side of (12) is bounded by the claimed quantity, since

1

2

∑
i∈[d]\[T]

[x?i]
2 =d→∞

(
1− 2√

κ+ 1

)T 1

2

∑
i∈[d]

[x?i]
2


≥ 1

κ

(
1− 2√

κ+ 1

)T
(f(x0)− f(x?)) ≥ ε (f(x0)− f(x?)) .

For κ� 1 and ε� 1
κ , Theorem 5 establishes that the iteration count required to achieve an ε-factor

decrease in the function error scales as T = Ω(
√
κ log 1

ε). Notice that Theorem 4 implies an upper
bound of T = O(κ log 1

ε), which is suboptimal in this regime. In a later lecture, we will see how
to more carefully combine two iterate sequences to design an algorithm matching the lower bound
of Theorem 5. This phenomenon of using multiple iterates (which induce certain history-aware
update rules viewable as adding “momentum” to our updates) to obtain faster algorithms is often
called “acceleration” or “accelerated gradient descent,” and was first discovered by [Nes83]. We will
give a proof-of-concept sketch that acceleration is possible in Part IV, improving upon Theorem 4.

Finally, we give a reduction-based argument which shows that in the L-smooth, convex setting of
Theorem 3, the best possible additive error rate scales as Ω(LT 2).

Lemma 11. Suppose that there is an algorithm A which takes as input x0 ∈ Rd and an L-smooth,
convex f : Rd → R (accessed through a gradient oracle) with x? ∈ argminx∈Rdf(x), and produces a
point x ∈ Rd using T queries such that, for some constants C, c > 0,

f(x)− f(x?) ≤
CL ‖x0 − x?‖22

T c
.

11

Then there is an algorithm A′ which takes as input x0 ∈ Rd and a L-smooth, µ-strongly convex
f : Rd → R (accessed through a gradient oracle) with x? ∈ argminx∈Rdf(x) and κ := L

µ , and
produces a point x ∈ Rd such that f(x)− f(x?) ≤ ε(f(x0)− f(x?)) in O(κ1/c log 1

ε) queries.

Proof. We will design a subroutine which produces x satisfying f(x)−f(x?) ≤ 1
2 (f(x0)−f(x?)) in

O(κ1/c) iterations, which implies the claim upon recursing. Indeed, applying A with T ≥ (2Cκ)1/c

implements this subroutine, since Lemma 9 shows

f(x)− f(x?) ≤
CL ‖x0 − x?‖22

T c
=
µ

4
‖x0 − x?‖22 ≤

1

2
(f(x0)− f(x?)).

Note that Theorem 3 gives an algorithm A achieving c = 1 in the statement of Lemma 11, and if
c > 2 were achievable, then this would result in a contradiction to the lower bound of Theorem 5.

Remark 4. Lemma 11 is a reduction from well-conditioned optimization to smooth, convex op-
timization. The reduction goes losslessly in the other direction as well, see e.g. [ZH16] for a proof,
so in this sense the two settings are essentially equivalent. Indeed, combined with our earlier claim
that there is an algorithm achieving O(

√
κ log 1

ε) query complexity for an ε-multiplicative error
decrease, [ZH16] immediately implies a variant of Theorem 3 with convergence rate O(LR

2

T 2).

5 Extensions
We discuss two extensions to the previous sections. We primarily focus on modifications to Sec-
tions 3 and 4, as extending Section 2 to a more general framework is the focus of the next lecture.
Specifically, we address the following two questions which are suggested by our earlier exposition.

1. Definitions 1, 3, and 4 are stated for general norms ‖·‖,9 but our development largely focused
on the setting where ‖·‖ = ‖·‖2. What happens more generally when ‖·‖ 6= ‖·‖2?

2. Theorems 3 and 4 are stated for unconstrained optimization. What happens in the con-
strained setting (where the function may be non-smooth at the boundary of a convex set)?

5.1 General norms
We begin our discussion of Item 1 by recalling the definition of a dual norm.

Definition 6 (Dual norm). For a norm ‖·‖ on Rd, the dual norm is ‖·‖∗ := max‖x‖≤1 〈x, ·〉.10

We remark that the dual norm to the dual norm (when working in Rd) is the original norm itself.
We also observe the following fact from convex analysis, which is often used.

Fact 2. For any norm ‖·‖ on Rd, the unit norm ball B‖·‖(1) is compact. Therefore, for all y ∈ Rd

there is a x ∈ Rd achieving ‖x‖ = 1 and 〈x, y〉 = ‖y‖∗.

A few common examples of dual norms follow for convenience.

1. When p ≥ 1, the dual of the `p norm ‖·‖p is ‖·‖q, for q ≥ 1 satisfying 1
p + 1

q = 1, where
q = ∞ if p = 1. For example, the `2 norm is self-dual, and in fact it is the only self-dual
norm. Moreover, the dual of the Schatten-p norm (a matrix generalization of the `p norm
equal to the `p norm of the singular values) is the Schatten-q norm, for q defined as above.

2. When A ∈ Sd×d�0 and ‖x‖A := (x>Ax)1/2 is the induced norm, the dual of ‖·‖A is ‖·‖A−1 .

The former claim follows from Hölder’s inequality, and the latter can be proven by using Lagrange
multipliers with Definition 6. We next present some useful facts about dual norms.

Lemma 12. For any norm ‖·‖ on Rd, ‖·‖∗ is a norm, and 〈x, y〉 ≤ ‖x‖ ‖y‖∗ for x, y ∈ Rd.
Moreover, ‖·‖∗∗ = ‖·‖.

9Recall that a norm on Rd is a function : Rd → R≥0 satisfying positive definiteness, absolute homogeneity, and
the triangle inequality. See Lemma 1, Part I and the corresponding footnote for the relevant definitions.

10Much of the discussion in this section can be generalized to arbitrary Banach spaces, but we focus on Rd for
simplicity as this is the main setting in applications.

12

Proof. To see the first claim, absolute homogeneity follows from linearity of Definition 6, and
positive definiteness then follows because ‖y‖ > 0 for any y 6= 0d, so ‖y‖∗ ≥ 〈z, y〉 > 0 by plugging
in z = 1

‖y‖y, which has ‖z‖ = 1. The triangle inequality follows since

‖y + y′‖∗ = max
‖x‖≤1

〈x, y + y′〉 ≤ max
‖x‖≤1

〈x, y〉+ max
‖x‖≤1

〈x, y′〉 = ‖y‖∗ + ‖y′‖∗ .

To see the second, given any x 6= 0d we can produce a lower bound on ‖y‖∗ by applying Definition 6
with x← x

‖x‖ ; rearranging gives the claim. When x = 0d the claim is clear from 0 ≤ 0.

To see the last claim, consider the Lagrangian formulation of the problem minz∈Rd,z=x ‖z‖ (where
strong duality holds, since we can verify Slater’s condition):

‖x‖ = min
z∈Rd,z=x

‖z‖ = min
z∈Rd

max
y∈Rd

‖z‖+ y>(x− z)

= max
y∈Rd

y>x+ min
z∈Rd

‖z‖ − y>z = max
‖y‖∗≤1

y>x = ‖x‖∗∗ .

In the last equality, if ‖y‖∗ > 1, then choosing z = Czy for C →∞ we can make the value of the
minimization problem −∞, where zy ∈ Rd achieves 〈zy, y〉 = ‖y‖∗ and ‖zy‖ = 1 (Fact 2).

By appropriately substituting Fact 2 and Lemma 12 into earlier proofs, we have the following
generalizations of Lemmas 5, 6, and 9, which we state without proof here.

Lemma 13. If f : X → R is convex and L-Lipschitz, x ∈ relint(X), and g ∈ ∂f(x), then ‖g‖∗ ≤ L.

Lemma 14. If f : Rd → R is differentiable and convex, then f is L-smooth with respect to ‖·‖ iff
for all x, x′ ∈ Rd,

f(x′) ≤ f(x) + 〈∇f(x), x′ − x〉+
L

2
‖x′ − x‖2 .

If f is twice-differentiable (and possibly nonconvex), f is L-smooth in ‖·‖ iff |∇2f(x)[v, v]| ≤ L ‖v‖2
for all x, v ∈ Rd.

If f : Rd → R is differentiable, then f is µ-strongly convex with respect to ‖·‖ iff for all x, x′ ∈ Rd,

f(x′) ≥ f(x) + 〈∇f(x), x′ − x〉+
µ

2
‖x′ − x‖2 .

If f is twice-differentiable, f is µ-strongly convex in ‖·‖ iff ∇2f(x)[v, v] ≥ µ ‖v‖2 for all x, v ∈ Rd.

Importantly, we can prove the following generalization of Corollary 2, which was the key to estab-
lishing the progress made by gradient descent in Theorem 3.

Corollary 4. Let f : Rd → R be L-smooth with respect to ‖·‖. Then for any x ∈ Rd, letting

x′ ← argminx′∈Rdf(x) + 〈∇f(x), x′ − x〉+
L

2
‖x′ − x‖2 , f(x′) ≤ f(x)− 1

2L
‖∇f(x)‖2∗ .

Proof. It suffices to take x′ = x− 1
L ‖∇f(x)‖∗ v, where ‖v‖ = 1 and 〈∇f(x), v〉 = ‖∇f(x)‖∗.

By substituting Lemma 12, Lemma 14, and Corollary 4 appropriately into the proof of Theorem 3,
we hence have the following generalization of gradient descent to general norms due to [KLOS14].

Theorem 6 (Smooth gradient descent in general norms). Let f : Rd → R be L-smooth with
respect to ‖·‖ and convex, and suppose for x0 ∈ Rd, we have maxx∈Rd,f(x)≤f(x0) ‖x− x?‖ ≤ R for
x? ∈ argminx∈Rdf(x). Then iterating

xt+1 ← xt −
1

L
‖∇f(xt)‖∗ vt, where 〈∇f(xt), vt〉 = ‖∇f(xt)‖∗ , ‖vt‖ = 1,

for 0 ≤ t < T , we have

f(xT)− f(x?) ≤ 2LR2

T
.

We mention that often, when ‖·‖ is explicit, we can compute the update direction vt in closed form.
The main difference between Theorem 6 and Theorem 3 (beyond the different choice of updates) is
that we require the slightly stronger assumption that all points with function value at most f(x0)
are contained in B‖·‖(x?, R), rather than just letting R = ‖x0 − x?‖.11 The culprit for this is that

11This is relevant because Corollary 4 guarantees each iterate xt has f(xt) ≤ f(x0), so ‖xt − x?‖ ≤ R.

13

we can no longer establish a contraction guarantee such as Lemma 8 for general norms.

Finally, we mention that the notion of the “well-conditioned setting” in optimization for general
norms can be drastically different than in the Euclidean setting. For example, there are norms (such
as ‖·‖∞) where any function which is L-smooth and µ-strongly convex in that norm necessarily
has L

µ = Ω(d), obviating the advantage of gradient descent-based methods over cutting-plane
methods; similar challenges are met when trying to design generalized accelerated gradient descent
algorithms. We will explore in a later lecture what types of linearly convergent or accelerated
guarantees we can hope for in generalized settings, which requires developing new technology.

5.2 Composite objectives
We next discuss Item 2, by providing a means to optimize more general composite objectives. In
particular, we give an algorithm which applies to functions of the form

F (x) := f(x) + ψ(x), for convex f, ψ : Rd → R, (13)

where f is smooth12 and ψ is “simple.” Concretely, we make the following assumption about ψ.

Definition 7 (Proximal oracle). We say O is a proximal oracle for ψ : Rd → R if for any v ∈ Rd

and λ ∈ R≥0, O(λ, v) returns argminx∈Rd
λ
2 ‖x− v‖

2
2 + ψ(x).

To gain some intuition for Definition 7, note that when ψ = χS is the indicator of a convex set S,
a proximal oracle returns the Euclidean projection of v onto S. In this case, (13) generalizes the
setting of constrained, smooth function minimization as asked by Item 2. More generally, proximal
oracle access to ψ can be viewed as a measure of how simple or explicit ψ is. A common example
of when ψ admits a linear-time proximal oracle is when ψ is coordinatewise separable, as then it
reduces to solving d one-dimensional problems. Common regularizers in machine learning, e.g. the
Lasso (`1 regularization) or ElasticNet, indeed have this separability property.

We conclude by generalizing Theorems 3 and 4 to the setting of (13), following [Sid23].

Theorem 7 (Proximal well-conditioned gradient descent). Let f : Rd → R be L-smooth and
convex, let ψ : Rd → R admit a proximal oracle O, let F := f + ψ be µ-strongly convex, and let
x? := argminx∈RdF (x) and κ := L

µ . Then iterating13

xt+1 ← argminx∈Rdf(xt) + 〈∇f(xt), x− xt〉+
L

2
‖x− xt‖22 + ψ(x) (14)

for 0 ≤ t < T , we have

F (xT)− F (x?) ≤
(

1− 1

κ+ 1

)T
(F (x0)− F (x?)) .

Proof. Consider a single iteration t, and let x(λ)
t := (1− λ)xt + λx? for λ ∈ [0, 1]. We derive:

F (xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖22 + ψ(xt+1)

= min
x∈Rd

f(xt) + 〈∇f(xt), x− xt〉+
L

2
‖x− xt‖22 + ψ(x)

≤ min
x∈Rd

F (x) +
L

2
‖x− xt‖22 ≤ min

λ∈[0,1]
F (x

(λ)
t) +

L

2
‖x(λ)

t − xt‖22

≤ min
λ∈[0,1]

(1− λ)F (xt) + λF (x?)− µλ(1− λ)

2
‖xt − x?‖22 +

Lλ2

2
‖xt − x?‖22

≤
(

1− 1

κ+ 1

)
F (xt) +

1

κ+ 1
F (x?).

The first line used smoothness of f , the second used the definition of xt+1, the third used convexity
of f and that restricting to a subset of Rd can only increase the minimum, the fourth used strong

12For simplicity in this section, we focus on the case of smoothness in the `2 norm, but using the aforementioned
techniques in general norms much of this section can be generalized appropriately.

13Note that this step can be implemented with one call to O(L, xt − 1
L
∇f(xt)).

14

convexity of F , and the last used the particular choice λ = 1
κ+1 . Finally, rearranging yields the

claim F (xt+1)− F (x?) ≤ (1− 1
κ+1)(F (xt)− F (x?)), and iterating gives the conclusion.

Theorem 8 (Proximal smooth gradient descent). Let f : Rd → R be L-smooth and convex, let
ψ : Rd → R admit a proximal oracle O, and let F := f+ψ be convex. Suppose for x0 ∈ Rd, we have
maxx∈Rd,F (x)≤F (x0) ‖x− x?‖2 ≤ R for x? ∈ argminx∈RdF (x). Then iterating (14) for 0 ≤ t < T ,
we have

F (xT)− F (x?) ≤ 2LR2

T − 1
.

Proof. We first observe that by convexity and the definitions of x1 and R,

F (x1) ≤ f(x0) + 〈∇f(x0), x? − x0〉+
L ‖x0 − x?‖22

2
+ ψ(x?) ≤ F (x?) +

LR2

2
.

Thus, denoting Φt := F (xt) − F (x?) and Rt := ‖xt − x?‖2 for all 0 ≤ t ≤ T , we have shown
Φ1 ≤ LR2

2 . Next, repeating the proof of Theorem 7 up to where we used strong convexity, we have

F (xt+1) ≤ F (xt) + min
λ∈[0,1]

(
−λΦt +

Lλ2R2
t

2

)
≤ F (xt)−min

(
Φ2
t

2LR2
t

,Φt −
LR2

t

2

)
≤ F (xt)−min

(
Φ2
t

2LR2
,

Φt
2

)
= F (xt)−

Φ2
t

2LR2
,

for all t ≥ 1. In the second inequality, the minimizing λ ∈ R is at λ? := Φt

LR2
t
, so we take

λ← min(λ?, 1); the third used that if λ = 1, we have LR2
t ≤ Φt. The last equality used Φt ≤ LR2

2
for all t ≥ 1. The remainder of the proof is identical to Theorem 3, offsetting indices by 1.

15

Source material
Portions of this lecture are based on reference material in [NY83, Nes03, Bub15, Tib16, Sid23], as
well as the author’s own experience working in the field.

References
[ABRW12] Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar, and Martin J. Wainwright.

Information-theoretic lower bounds on the oracle complexity of stochastic convex op-
timization. IEEE Trans. Inf. Theory, 58(5):3235–3249, 2012.

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and
Trends in Machine Learning, 8(3-4):231–357, 2015.

[CDHS20] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for
finding stationary points I. Math. Program., 184(1):71–120, 2020.

[CJJ+20] Yair Carmon, Arun Jambulapati, Qijia Jiang, Yujia Jin, Yin Tat Lee, Aaron Sidford,
and Kevin Tian. Acceleration with a ball optimization oracle. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, 2020.

[GLM16] Rong Ge, Jason D. Lee, and Tengyu Ma. Matrix completion has no spurious local min-
imum. In Advances in Neural Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, pages 2973–2981, 2016.

[HM17] Moritz Hardt and Tengyu Ma. Identity matters in deep learning. In 5th International
Conference on Learning Representations, ICLR 2017, 2017.

[KLOS14] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-
linear-time algorithm for approximate max flow in undirected graphs, and its multi-
commodity generalizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, pages 217–226. SIAM, 2014.

[KNS16] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and
proximal-gradient methods under the polyak-łojasiewicz condition. In Machine Learn-
ing and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016,
volume 9851 of Lecture Notes in Computer Science, pages 795–811. Springer, 2016.

[LSB12] Simon Lacoste-Julien, Mark Schmidt, and Francis R. Bach. A simpler approach to
obtaining an o(1/t) convergence rate for the projected stochastic subgradient method.
CoRR, abs/1212.2002, 2012.

[Nes83] Yurii Nesterov. A method for solving a convex programming problem with convergence
rate o(1/k2). Doklady AN SSSR, 269:543–547, 1983.

[Nes03] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, vol-
ume I. 2003.

[NY83] A. Nemirovski and D.B̃. Yudin. Problem Complexity and Method Efficiency in Opti-
mization. Wiley, 1983.

[RSS12] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent
optimal for strongly convex stochastic optimization. In Proceedings of the 29th Inter-
national Conference on Machine Learning, ICML 2012, 2012.

[Sid23] Aaron Sidford. Optimization Algorithms. 2023.

[Tib16] Ryan Tibshirani. Lecture 13: Duality uses and correspondences. class notes, cmu
10-725/36-725: Convex optimization. https://www.stat.cmu.edu/ ryantibs/convexopt-
F16/scribes/dual-corres-scribed.pdf, 2016.

[XLS17] Bo Xie, Yingyu Liang, and Le Song. Diverse neural network learns true target func-
tions. In Proceedings of the 20th International Conference on Artificial Intelligence and

16

Statistics, AISTATS 2017, volume 54 of Proceedings of Machine Learning Research,
pages 1216–1224. PMLR, 2017.

[ZH16] Zeyuan Allen Zhu and Elad Hazan. Optimal black-box reductions between optimiza-
tion objectives. In Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, pages 1606–1614, 2016.

17

	Oracle model
	Lipschitz optimization
	Smooth optimization
	Well-conditioned optimization
	Extensions
	General norms
	Composite objectives

